

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА» (ОАО ЦНИИС)

ЦНИИС является головной организацией в системе Главстроя, входящего в компанию «Базовый элемент», по научным исследованиям, стандартизации и нормированию в области проектирования, строительства и реконструкции:

- железных дорог (включая электрификацию);
- тоннелей и метрополитенов;
- MOCTOB:
- транспортных гидротехнических сооружений:
- транспортных зданий;
- инженерной защиты объектов и сооружений транспорта

В соответствии с лицензиями Федерального агентства по строительству и Федеральной службы за соблюдением законодательства в области охраны культурного наследия ЦНИИС выполняет работы по:

- инженерным изысканиям и проектированию, транспортных сооружений и объектов культурного наследия, в том числе на территориях со сложными ландшафтными и инженерно-геологическими условиями (сейсмика, вечная мерзлота, подтопление);
- обследованию технического состояния зданий и сооружений, испытанию материалов, конструкций, сооружений, строительных машин и оборудования, сертификации промышленной продукции в строительстве с выдачей сертификатов соответствия в системе ГОСТ-Р;
- контролю качества строительных работ;
- техническому надзору за строительством.

Институт обладает высоким научным потенциалом. В разное время в ЦНИИСе работали такие выдающиеся ученые с мировым именем, как К.С.Силин, А.А.Луга, В.С.Лукьянов, О.Я.Берг, К.П.Большаков, Я.А.Дорман, В.Л.Маковский, Н.М.Колоколов, Н.Б.Лялин, Б.Е.Улицкий, Д.И.Федоров, С.В.Шестоперов. Ими созданы научные школы по актуальным проблемам транспортного строительства, известные как в России, так и за рубежом. В настоящее время в институте работает 15 докторов и 107 кандидатов наук, 12 действительных членов российских и зарубежных академий наук, лауреаты Государственных премий и Премий Правительства РФ, Заслуженные деятели науки и техники. Заслуженные изобретатели, Заслуженные егроители РФ.

В структуре института — оснащенные на современном техническом уровне научно-исследовательские и испыательные центры, отделения и лаборатории по всем направлениям транспортного строительства, а также органы сертификации промышленной продукции в строительстве и в области охраны труда, головной аттестационный центр по сварочному производству, работают аспирантура и докторантура, диссертационный Совет по защите кандидатских и докторских диссертаций.

Для выполнения комплекса работ институт имеет новейшие средства испытаний, обработки и анализа получаемой информации, современную вычислительную технику и оборудование, располагает экспериментальной базой со специализированными стендами, технической и патентной библиотеками, библиотекой норм и стандартов. Под руководством и при непосредственном участии института разработаны основные нормативные документы по транспортному строительству.

Специалисты ОАО ЦНИИС, работая в тесном содружестве с проектировщиками и строителями организаций, объединенных проектно-строительной компанией «Трансстрой», в последние годы принимали участие строительстве крупных объектов в г. Москев, в том числе мостовые и тоннельные сооружения на Ленинградском, Краснопресненском и Звениго-родском проспектах и 3-ем транспортном кольце, Боровском шоссе, мини-метро, монорельсовой транспортной системы, подземного города на Манежной площади и железнодорожного терминала во Внуково, сооружений Делового центра «Москва-Сити», мостовых сооружений на кольцевой автодороге вокруг Санкт-Петербурга, уникальных мостов через реки Обь, Волгу, Ангару, зстакад в Республике Казахстан, объектов электрификации железных дорог России, объектов подземного строительства в гг. Казани, Перми, Челябинске, Омске, железных и автомобильных дорог в зонах освоения нефтегазовых месторождений на п-ве Кампатка.

Среди постоянных заказчиков института организации объединяемые проектно-строительной компанией «Трансстрой», организации Минтранса РФ, строительного комплекса г.Москвы, Московский метрополитен, ОАО РЖД, ОАО ГАЗПРОМ, региональные строительные компании, а также ряд зарубежных фирм и компаний.

Постоянная работа по самосовершенствованию и развитию, востребованность разработок института строительной практикой позволили институту стать Лауреатом Всероссийского конкурса «Стройнаука» и Лауреатом Национальной Общественной премии транспортной горасли «Золотая Колесница» в номинации «Лидер Российской транспортной науки и образования». Ряд разработок института за последнее десятилетие удостоен премий Правительства Российской Федерации в области науки и техники, многие инновационные разработки регулярно отмечаются различными дипломами и аттестатами на выставках научно-технических достижений.

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА» (ОАО ЦНИИС)

ЗАКЛЮЧЕНИЕ ОБ ИСПОЛЬЗОВАНИИ РЕМОНТНЫХ МАТЕРИАЛОВ ЗАО «МАПЕИ» В ТРАНСПОРТНОМ СТРОИТЕЛЬСТВЕ

Открытое акционерное общество «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ

ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА»

(ОАО ЦНИИС)

Филиал ОАО ЦНИИС «Научно-исследовательский центр «Мосты» (Филиал ОАО ЦНИИС «НИЦ Мосты»)

УДК № госрегистрац Инв. №

> УТВЕРЖДАЮ: Лиректор филиала ОАО ЦНИИС ниц «Мосты», канд. техн. наук Ю. В. Новак

Заключение об использовании ремонтных материалов ЗАО «МАПЕИ» в транспортном строительстве.

ИС-09-287-10

РАЗРАБОТАНО:

Зав. лабораторией «Ремонта и Реконструкции железобетонных мостов», канд. техн. наук

Руководитель темы, инженер I кат.

Нормоконтролер, инженер

А. С. Бейвель

А. А. Матвеев

А.А. Волоцкой

Москва 2009

Список исполнителей

Заведующий лабораторией Строительства и ремонта ж/б мостов, к.т.н.

25.11.09

А.С. Бейвель (Разработка методики, участие в испытаниях, анализ результатов испытаний, составление Заключения)

Ведущий научный сотрудник лаборатории Строительства и ремонта ж/б мостов, к.т.н.

Jeecews 25.11.09r. Е.С. Одинцов (Проведение испытаний, составление Заключения)

Ведущий научный сотрудник лаборатории Строительства и ремонта ж/б мостов, к.т.н.

25.11.2009

Е.В. Фальковский (Участие в испытаниях, анализ результатов испытаний)

Инженер I категории лаборатории Строительства и ремонта ж/б мостов

Ala) 25.11.05 А.А. Матвеев (Проведение испытаний, анализ результатов испытаний, составление Заключения)

Инженер I категории лаборатории Строительства и ремонта ж/б мостов

25.11.09

П.Р. Дмитриев (Проведение испытаний, обработка результатов испытаний)

Нормоконтролер, инженер

Bosy -

А.А. Волоцкой

СОДЕРЖАНИЕ

1. Введение	5
2. Экспериментальные исследования кинетики роста прочности ремонтных материалов при нормальной в +20°С и повышенной до +40°С температурах твердения	6
3. Экспериментальные исследования влияние процесса замораживания — оттаивания в солях, на величину адгезии к бетону	22
4. Выводы об эффективности применения ремонтных материалов Mapegrout Thixotropic, Mapegrout Hi-Flow, APБ-10Ф и Eporip	26

1. Введение

Настоящее Заключение разработано в соответствии с договором № ИС-09-287-10 от 17 апреля 2009 года между Закрытым Акционерным Обществом «МАПЕИ» и Открытым Акционерным Обществом «ЦНИИС» Филиал ОАО ЦНИИС «НИЦ «Мосты» (Научно-Исследовательский Институт Транспортного Строительства, Филиал Научно-Исследовательский Центр «Мосты»).

Исследования проводились в лаборатории Строительства и ремонта железобетонных мостов Филиала ОАО ЦННИС НИЦ «Мосты» для ремонтных материалов марок **APБ-10Ф**, **Mapegrout Thixotropic**, **Mapegrout Hi-Flow**, производимых ЗАО «МАПЕИ».

Целью настоящего Заключения является оценка возможности применения таких материалов при ремонте транспортных сооружений.

Заключение составлено на основании данных экспериментальных исследований по вопросам:

- 1. Влияния повышенной до +40°C температуры твердения на кинетику роста прочности ремонтных составов.
- Влияния процесса циклического замораживания оттаивания в соляном растворе на величину адгезии ремонтных составов к бетону (по ГОСТ 31356-2007 «Межгосударственный стандарт. Смеси сухие строительные на цементном вяжущем. Методы испытаний»).

2. Экспериментальные исследования кинетики роста прочности ремонтных материалов при нормальной в +20°C и повышенной до +40°C температурах твердения

Как правило, ремонт эксплуатируемых транспортных сооружений связан с необходимостью его проведения в короткие промежутки времени при перерывах движения транспорта, в течение которых ремонтный материал в конструкции, к моменту открытия движения, должен набрать требуемую прочность. В связи с этим, одной из важных характеристик ремонтного материала является быстрый набор прочности в ограниченный отрезок времени. Достижение требуемого уровня прочности ремонтного состава требует повышенной температуры его твердения.

В исследованиях были использованы ремонтные составы со следующими характеристиками:

Mapegrout Thixotropic — однокомпонентный состав на основе портландцемента. Обладает тиксотропными свойствами, компенсированной усадкой, содержащий фракционированный инертный заполнитель с максимальным размером частиц до 3 мм, полимерную фибру и комплексную минерально-химическую добавку.

Mapegrout Hi-Flow — однокомпонентный состав высокоподвижной консистенции, на основе портландцемента, с компенсированной усадкой, содержащий фракционированный инертный заполнитель с максимальным размером частиц до 3 мм, полимерную фибру и комплексную минерально-химическую добавку.

АРБ-10Ф — однокомпонентный состав подвижной консистенции, с компенсированной усадкой на основе портландцемента. Содержит фракционированный инертный заполнитель с максимальным размером частиц до 10 мм, стальную латунизированную, а также полимерную фибру и комплексную минерально-химическую добавку.

В лабораторных условиях для приготовления ремонтных смесей из материалов марок **Mapegrout Thixotropic** и **Mapegrout Hi-Flow** использовалась низкобортная дрель с венчиком (Рисунок П1), для приготовления бетонной смеси марки **APБ-10Ф** была применена растворомешалка принудительного действия марки MPБС — 100 №32 (Рисунок П2). При этом время перемешивания смеси **APБ-10Ф** составляло четыре минуты.

Изготовление контрольных образцов-кубов размером 10х10х10 см из ремонтных материалов проводилось на лабораторной виброплощадке марки СМЖ-739 (инв. № 1184), которая использовалась для кратковременного (в течение 3-5 сек) уплотнения смесей.

В процессе приготовлении ремонтных смесей применялась следующая дозировка воды на 25 кг (мешок) ремонтного состава:

- Mapegrout Thixotropic 4.0 л
- Mapegrout Hi-Flow 3,125 л
- **АРБ-10Ф** 2.15 л

Контрольные образцы-кубы с каждым видом ремонтной смеси были разделены на две партии.

Первую партию образцов-кубов помещали в разогретую пропарочную камеру, в которой в течение всего времени нахождения образцов, поддерживалась температура $40\pm2^{\circ}$ C.

Время выдерживания образцов в пропарочной камере составляло 10 часов, после чего нагреватели камеры отключали (температуре образцов в этот момент фиксировалась на уровне 22±10°C), контрольные образцы — кубы извлекали из камеры, распалубливали и испытывали на сжатие.

Вторая партия образцов-кубов, до момента испытаний на сжатие хранилась при нормальных условиях твердения (температура 20±2°С и влажность 98±2%).

Испытания на сжатие образцов-кубов составов марок **Mapegrout Thixotropic**, **Mapegrout Hi-Flow** и **APБ-10Ф** проводились по ГОСТ 10180-90, по истечении следующих интервалов времени после изготовления: через 6 ч, 8 ч, 10 ч, 1 сут., 3 сут., 7 сут., 28 сут. (таблицы №1-3).

На рисунках № 1, 2, 3 представлены кривые кинетики роста прочности ремонтных составов при нормальной (+20°С, кривая синего цвета) и при повышенной (+40°С, кривая красного цвета) температурах твердения.

Кинетика набора прочности материалов **Mapegrout Thixotropic**, **Mapegrout Hi-Flow** и **APБ-10Ф** показывает, что указанные материалы имеют высокие показатели прочности на сжатие уже в первые часы твердения (см. Таблицы № 1, 2, 3), а также Рисунки 1, 2, 3. Создание условий для твердения смеси при температуре в +40°С, позволяет уже через 6 часов получить прочность ремонтного материала свыше 100 кгс/см². Достижение такого уровня прочности ремонтного материала, в первые часы после изготовления, позволит применять эти материалы для ремонта конструкций транспортного назначения в условиях коротких перерывов движения транспорта.

Значения прочности материалов на сжатие на 28-е сутки твердения, свидетельствуют, что такие ремонтные материалы могут быть отнесены к классу бетона не ниже B60.

Таблица 1Результаты испытания контрольных образцов — кубов марки **Mapegrout Thixotropic**

Nº		Темпе- ратура		Размеры		Macca,	Рабочая	
п/п	Возраст	тверде- ния, °С	длина	ширина	высота	Г	площадь, См²	
1	6 ч	20	9,9	10,05	10	2240	99,5	
2	6 ч	20	10	10	10,05	2230	100,0	
3	6 ч	20	10	9,95	9,9	2183	99,5	
4	6 ч	40	10	10	10,05	2215	100,0	
5	6 ч	40	9,95	10	10,1	2197	99,5	
6	6 ч	40	10	10	10,1	2211	100,0	
7	8 ч	20	10,05	9,9	10,05	2172	99,5	
8	8 ч	20	10	9,95	10	2179	99,5	
9	8 ч	20	10	10,1	10	2214	101,0	
10	8 ч	40	9,9	9,9	9,9	2199	98,0	
11	8 ч	40	10	10	10	2213	100,0	
12	8 ч	40	10	10	10	2180	100,0	
13	10 ч	20	9,95	10	9,95	2194	99,5	
14	10 ч	20	9,95	9,9	10	2215	98,5	
15	10 ч	20	10	9,95	10	2210	99,5	
16	10 ч	40	10	10	9,95	2216	100,0	
17	10 ч	40	10	10	9,95	2190	100,0	
18	10 ч	40	9,95	10	10	2204	99,5	
19	24 ч	20	10	10,05	10,05	2212	100,5	
20	24 ч	20	9,9	9,95	10,05	2164	98,5	
21	24 ч	20	9,95	10,05	10	2180	100,0	

Объем, см³	Объёмная масса, г/см³	Разруш. нагрузка, кН	Проч- ность, МПа	Проч- ность, кгс/см²	Средняя проч- ность с учетом масштабного коэфф., кгс/см²	Средняя проч- ность с учетом масштабного коэфф., МПа
995,0	2,25	5,9	0,6	5,8		
1005,0	2,22	6,5	0,7	6,4	6,2	0,6
985,1	2,22	7,4	0,7	7,3		
1005,0	2,20	179,2	17,9	175,8		
1005,0	2,19	178,4	17,9	175,9	169,3	17,3
1010,0	2,19	186,5	18,7	183,0		
999,9	2,17	25,7	2,6	25,3		
995,0	2,19	26,1	2,6	25,7	23,2	2,4
1010,0	2,19	22,9	2,3	22,2		
970,3	2,27	310,6	31,7	310,9		
1000,0	2,21	316,2	31,6	310,2	279,1	28,5
1000,0	2,18	265,4	26,5	260,4		
990,0	2,22	63,6	6,4	62,7		
985,1	2,25	68,4	6,9	68,1	62,1	6,3
995,0	2,22	66,1	6,6	65,2		
995,0	2,23	336,6	33,7	330,2		
995,0	2,20	331,0	33,1	324,7	317,2	32,3
995,0	2,22	351,6	35,3	346,7		
1010,0	2,19	442,9	44,1	432,3		
990,0	2,19	384,7	39,1	383,1	391,5	39,9
1000,0	2,18	428,9	42,9	420,8		

Таблица 1 (продолжение) Результаты испытания контрольных образцов — кубов марки **Mapegrout Thixotropic**

Nº		Темпе- ратура		Размеры		Macca,	Рабочая	
n/n	Возраст	тверде- ния, °С	длина	ширина	высота	г	площадь, См²	
22	244	40	10	10	10,05	2203	100,0	
23	244	40	9,95	10,05	10	2208	100,0	
24	244	40	9,95	10,05	10	2223	100,0	
25	3c	20	10	10	10,1	2222	100,0	
26	3c	20	10	10,1	10,2	2250	101,0	
27	3c	20	10	10,1	10	2217	101,0	
28	Зсут	40	10,05	9,95	9,95	2216	100,0	
29	Зсут	40	10	9,98	10	2248	99,8	
30	Зсут	40	10	9,95	10	2234	99,5	
31	7c	20	10	10	10	2205	100,0	
32	7c	20	10	10	10,1	2245	100,0	
33	7c	20	10	10	10	2191	100,0	
34	7c	40	10	10	10	2205	100,0	
35	7c	40	10	10	10	2217	100,0	
36	7c	40	10	10	10,1	2186	100,0	
37	28c	20	9,9	9,9	9,9	2190	98,0	
38	28c	20	10	10	10	2196	100,0	
39	28c	20	10	10	10	2206	100,0	
40	28c	40	10	10	10	2192	100,0	
41	28c	40	10	10	10	2195	100,0	
42	28c	40	10	10	10	2244	100,0	

Объем, см³	Объёмная масса, г/см³	Разруш. нагрузка, кН	Проч- ность, МПа	Проч- ность, кгс/см²	Средняя проч- ность с учетом масштабного коэфф., кгс/см ²	Средняя проч- ность с учетом масштабного коэфф., МПа
1005,0	2,19	442,5	44,3	434,1		
1000,0	2,21	433,8	43,4	425,6	392,1	40,0
1000,0	2,22	385,9	38,6	378,6		
1010,0	2,20	571,2	57,1	560,3		
1030,2	2,18	536,9	53,2	521,5	508,9	51,9
1010,0	2,20	540,7	53,5	525,2		
995,0	2,23	542,1	54,2	531,8		
998,0	2,25	466,8	46,8	458,8	440,0	44,9
995,0	2,25	404,5	40,7	398,8		
1000,0	2,21	570,3	57,0	559,5		
1010,0	2,22	539,1	53,9	528,9	553,2	56,4
1000,0	2,19	671,3	67,1	658,5		
1000,0	2,21	559,6	56,0	549,0		
1000,0	2,22	582,1	58,2	571,0	537,6	54,8
1010,0	2,16	588,9	58,9	577,7		
970,3	2,26	777,6	79,3	778,3		
1000,0	2,20	826,8	82,7	811,1	724,4	73,8
1000,0	2,21	711,6	71,2	698,1		
1000,0	2,19	721,5	72,2	707,8		
1000,0	2,20	730,9	73,1	717,0	660,1	67,3
1000,0	2,24	672,4	67,2	659,6		

Таблица 2Результаты испытания контрольных образцов — кубов марки **Mapegrout Hi-Flow**

Nº		Темпе- ратура		Размеры		Macca,	Рабочая	
п/п	Возраст	тверде- ния, °С	длина	ширина	высота	Г	площадь, См²	
1	84	20	10	9,6	10	2246	96,0	
2	84	20	10	9,7	10	2327	97,0	
3	84	20	9,9	9,65	9,9	2256	95,5	
4	84	40	10	9,75	10	2285	97,5	
5	84	40	10	9,85	10	2306	98,5	
6	84	40	10	9,8	10	2300	98,0	
7	104	20	10	9,7	10	2269	97,0	
8	10ч	20	10	9,7	10	2257	97,0	
9	10ч	20	9,85	9,6	10	2243	94,6	
10	10ч	40	10	9,75	9,7	2269	97,5	
11	10ч	40	9,75	10	9,75	2290	97,5	
12	10ч	40	9,8	10	9,9	2286	98,0	
13	244	20	9,95	9,85	10	2347	98,0	
14	244	20	9,9	9,75	9,8	2313	96,5	
15	244	20	9,8	9,85	9,9	2319	96,5	
16	244	40	10	9,95	9,9	2354	99,5	
17	244	40	10	10	10	2352	100,0	
18	244	40	10	9,95	10,5	2350	99,5	
19	Зсут	20	9,8	10	10,05	2255	98,0	
20	Зсут	20	10	9,9	10,03	2205	99,0	
21	Зсут	20	9,9	10	10,1	2348	99,0	

Объем, см³	Объёмная масса, г/см³	Разруш. нагрузка, кН	Проч- ность, МПа	Проч- ность, кгс/см²	Средняя проч- ность с учетом масштабного коэфф., кгс/см²	Средняя проч- ность с учетом масштабного коэфф., МПа
960,0	2,34	56	5,8	57,2		
970,0	2,40	62	6,4	62,7	56,6	5,8
945,8	2,39	57,4	6,0	58,9		
975,0	2,34	446,9	45,8	449,7		
985,0	2,34	448	45,5	446,2	421,9	43,0
980,0	2,35	435,9	44,5	436,3		
970,0	2,34	118,7	12,2	120,0		
970,0	2,33	119,8	12,4	121,2	112,5	11,5
945,6	2,37	110	11,6	114,1		
945,8	2,40	498,2	51,1	501,3		
950,6	2,41	504	51,7	507,1	479,9	48,9
970,2	2,36	506,5	51,7	507,0		
980,1	2,39	582,8	59,5	583,4		
945,9	2,45	503,9	52,2	512,1	517,1	52,7
955,6	2,43	528,8	54,8	537,4		
985,1	2,39	776,3	78,0	765,4		
1000,0	2,35	663,4	66,3	650,8	698,3	71,2
1044,8	2,25	800,4	80,4	789,1		
984,9	2,29	800,6	81,7	801,4		
993,0	2,22	735,9	74,3	729,2	731,7	74,6
999,9	2,35	787,3	79,5	780,1		

Таблица 2 (продолжение)
Результаты испытания контрольных образцов — кубов марки **Mapegrout Hi-Flow**

Nº		Темпе- ратура		Размеры		Macca.	Рабочая	
п/п	Возраст	тверде- ния, °С	длина	ширина	ширина высота		площадь, См²	
22	Зсут	40	10	10	9,95	2388	100,0	
23	Зсут	40	10	10	10	2335	100,0	
24	Зсут	40	9,97	9,95	10	2323	99,2	
25	7сут	20	10	9,9	10,05	2294	99,0	
26	7сут	20	10,05	9,8	10,1	2316	98,5	
27	7сут	20	9,9	9,9	10,05	2334	98,0	
28	7сут	40	9,95	10	10	2297	99,5	
29	7сут	40	10	10,05	10	2345	100,5	
30	7сут	40	10	10	10	2324	100,0	
31	28сут	20	10	9,97	10,08	2323	99,7	
32	28сут	20	9,97	9,87	10,12	2309	98,4	
33	28сут	20	10,03	9,95	10,07	2346	99,8	
34	28сут	40	10,03	10,01	10,01	2283	100,4	
35	28сут	40	9,99	10,05	10,06	2311	100,4	
36	28сут	40	10,03	9,92	10,03	2301	99,5	

Объем, см³	Объёмная масса, г/см ³	Разруш. нагрузка, кН	Проч- ность, МПа	Проч- ность, кгс/см²	Средняя проч- ность с учетом масштабного коэфф., кгс/см ²	Средняя проч- ность с учетом масштабного коэфф., МПа
995,0	2,40	829,9	83,0	814,1		
1000,0	2,34	834,4	83,4	818,5	790,1	80,5
992,0	2,34	872	87,9	862,3		
995,0	2,31	697,3	70,4	691,0		
994,7	2,33	971,3	98,6	967,5	813,4	82,9
985,0	2,37	909,3	92,8	910,1		
995,0	2,31	872,2	87,7	859,9		
1005,0	2,33	939,9	93,5	917,5	844,3	86,1
1000,0	2,32	906	90,6	888,8		
1005,0	2,31	876,6	87,9	862,5		
995,8	2,32	959,7	97,5	956,7	908,7	92,6
1005,0	2,33	1068,4	107,1	1050,2		
1005,0	2,27	1181	117,6	1153,9		
1010,0	2,29	1093	108,9	1068,0	982,9	100,2
998,0	2,31	894,4	89,9	881,8		

Таблица 3Результаты испытания контрольных образцов — кубов марки **АРБ-10Ф**

No		Темпе- ратура		Размеры		Macca,	Рабочая	
n/n	Возраст	тверде- ния, °С	длина	ширина	высота	Г	площадь, См²	
1	64	20	10	10,1	10,05	2515	101,0	
2	64	20	10	10	10	2523	100,0	
3	64	20	10	10	10	2516	100,0	
4	64	40	10,5	10	10	2501	105,0	
5	64	40	10,3	10	10	2499	103,0	
6	64	40	10	10,2	10	2438	102,0	
7	84	20	10	10,2	10	2490	102,0	
8	84	20	10	10,1	10	2498	101,0	
9	84	20	10	10,2	10	2496	102,0	
10	84	40	10,2	10	10	2454	102,0	
11	84	40	10,2	10	10	2456	102,0	
12	84	40	10,3	9,9	9,9	2459	102,0	
13	10ч	20	10	10,05	9,9	2474	100,5	
14	10ч	20	10	10,2	10	2486	102,0	
15	104	20	10	10	10	2477	100,0	
16	10ч	40	10,1	10	10	2426	101,0	
17	10ч	40	10,3	10	10	2494	103,0	
18	10ч	40	10,2	10	10	2443	102,0	
19	244	20	10,1	10	9,95	2500	101,0	
20	244	20	10,1	9,95	10	2468	100,5	
21	244	20	10,1	10	10	2507	101,0	

Объем, см³	Объёмная масса, г/см³	Разруш. нагрузка, кН	Проч- ность, МПа	Проч- ность, кгс/см²	Средняя проч- ность с учетом масштабного коэфф., кгс/см²	Средняя проч- ность с учетом масштабного коэфф., МПа
1015,1	2,48	11,3	1,1	11,0		
1000,0	2,52	8,4	0,8	8,2	9,1	0,9
1000,0	2,52	9,85	1,0	9,7		
1050,0	2,38	143,0	13,6	133,6		
1030,0	2,43	147,9	14,4	140,9	132,5	13,5
1020,0	2,39	149,8	14,7	144,1		
1020,0	2,44	28,2	2,8	27,1		
1010,0	2,47	27,6	2,7	26,8	27,1	2,8
1020,0	2,45	33,0	3,2	31,7		
1020,0	2,41	270,4	26,5	260,1		
1020,0	2,41	296,7	29,1	285,4	262,3	26,7
1009,5	2,44	294,2	28,9	283,0		
995,0	2,49	37,8	3,8	36,9		
1020,0	2,44	34,5	3,4	33,2	33,4	3,4
1000,0	2,48	36,0	3,6	35,3		
1010,0	2,40	372,1	36,8	361,4		
1030,0	2,42	397,1	38,6	378,2	353,7	36,1
1020,0	2,40	392,3	38,5	377,3		
1005,0	2,49	419,1	41,5	407,1		
1005,0	2,46	456,3	45,4	445,4	408,1	41,6
1010,0	2,48	449,2	44,5	436,3		

Таблица 3 (продолжение)
Результаты испытания контрольных образцов — кубов марки **АРБ-10Ф**

Nº		Темпе- ратура		Размеры		Macca,	Рабочая	
п/п	Возраст	тверде- ния, °С	длина	ширина	высота	Г	площадь, См²	
22	244	40	10,1	10	9,95	2486	101,0	
23	244	40	10,1	10	10	2484	101,0	
24	244	40	10,2	9,95	9,95	2497	101,5	
25	Зсут	20	9,9	10,1	10	2423	100,0	
26	Зсут	20	10	10,1	10,1	2463	101,0	
27	Зсут	20	10	10	10	2464	100,0	
28	Зсут	40	10,05	10,05	9,9	2440	101,0	
29	Зсут	40	10	10	9,9	2429	100,0	
30	Зсут	40	10,1	10	10,1	2514	101,0	
31	7сут	20	10	10	10,1	2465	100,0	
32	7сут	20	10	10	10,1	2464	100,0	
33	7сут	20	9,9	10	10,1	2440	99,0	
34	7сут	40	10	10	10,05	2417	100,0	
35	7сут	40	9,9	10	9,98	2445	99,0	
36	7сут	40	9,9	10,1	9,95	2508	100,0	
37	28сут	20	10	10,3	9,9	2476	103,0	
38	28сут	20	10	10,1	10	2427	101,0	
39	28сут	20	10	10,2	10	2468	102,0	
40	28сут	40	10	10,4	10	2499	104,0	
41	28сут	40	10	10,2	10	2490	102,0	
42	28сут	40	10	10,1	10	2423	101,0	

Объем, см³	Объёмная масса, г/см³	Разруш. Нагрузка, кН	Проч- ность, МПа	Проч- ность, кгс/см²	Средняя проч- ность с учетом масштабного коэфф., кгс/см²	Средняя проч- ность с учетом масштабного коэфф., МПа
1005,0	2,47	531,4	52,6	516,1		51,4
1010,0	2,46	545,5	54,0	529,8	504,7	
1009,8	2,47	566,8	55,8	547,9		
999,9	2,42	670,0	67,0	657,3		
1020,1	2,41	594,3	58,8	577,2	582,7	59,4
1000,0	2,46	617,2	61,7	605,5		
999,9	2,44	608,8	60,3	591,3		
990,0	2,45	596,4	59,6	585,1	555,9	56,7
1020,1	2,46	596,2	59,0	579,1		
1010,0	2,44	693,6	69,4	680,4		62,2
1010,0	2,44	497,8	49,8	488,3	610,0	
999,9	2,44	764,4	77,2	757,5		
1005,0	2,40	651,6	65,2	639,2		
988,0	2,47	687,6	69,5	681,3	629,5	64,2
994,9	2,52	680,2	68,0	667,3		
1019,7	2,43	880,9	85,5	839,0		
1010,0	2,40	810,4	80,2	787,1	794,1	80,9
1020,0	2,42	916,5	89,9	881,5		
1040,0	2,40	790,9	76,0	746,0	706,2	72,0
1020,0	2,44	778,2	76,3	748,4		
1010,0	2,40	757,5	75,0	735,8		

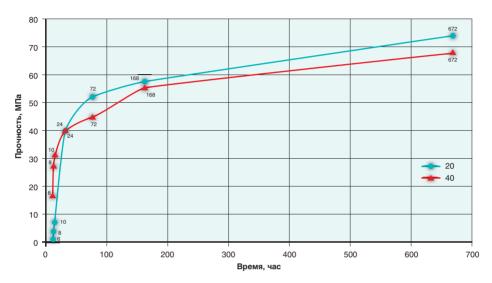


Рис.1 Кинетика роста прочности бетонной смеси Mapegrout Thixotropic

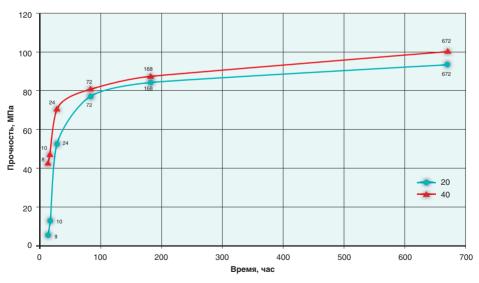


Рис.2 Кинетика роста прочности бетонной смеси Mapegrout Hi-Flow

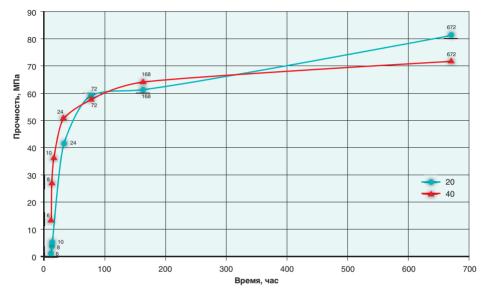


Рис.3 Кинетика роста прочности бетонной смеси АРБ-10Ф

3. Экспериментальные исследования влияние процесса замораживания — оттаивания в солях, на величину адгезии к бетону

3. Экспериментальные исследования влияние процесса замораживания — оттаивания в солях, на величину адгезии к бетону.

Надёжность адгезии «старого» и вновь укладываемого ремонтного материала, определяется многими факторами, не последнюю роль из которых играет качественная подготовка бетонной поверхности к ремонту. Обеспечить (проконтролировать) необходимое качество поверхности по всей площади ремонтируемых зон в производственных условиях достаточно трудно. В связи с этим является важным применение адгезионных составов для обеспечения сцепления «нового» и «старого» бетонов.

В первом варианте эксперимента по исследованию изменения уровня адгезии под действием знакопеременных температурных нагрузок, в качестве адгезионного состава был принят эпоксидный состав марки **Eporip**, который соединял бетонную подложку в виде плиты (толщина 70 см) с укладываемым на неё ремонтным составом (толщина 30 мм) из смеси марки **APБ-10Ф**. Поверхность подложки была обработана металлическими щётками.

Во втором варианте эксперимента ремонтный состав марки **АРБ-10Ф** укладывали на обработанную металлическими щётками поверхность подложки, насыщенной водой.

Подготовленные, таким образом, бетонные сэндвич-плиты помещали в камеру нормального хранения, где выдерживали при температуре 20°С и влажности 98% в течение 28 суток.

Испытания уровня адгезии проводили на основании положений ГОСТ 31356-2007 «Межгосударственный стандарт. Смеси сухие строительные на цементном вяжущем. Методы испытаний».

Затем производили высверливание из подложки сэндвичей образцов-кернов (Рисунок П5). Сэндвич образцы-керны помещали в климатическую камеру с последующим проведением необходимых циклов замораживания — оттаивания в соляном растворе по ГОСТ 10060.2-95 «Бетоны. Ускоренные методы определения морозостойкости при многократном замораживании и оттаивании».

Определение величины адгезии проводили в универсальной испытательной машине ОАО ЦНИИС марки ГРМ-1, конструктивные элементы которой обеспечивают осевое действия растягивающего усилия отрыва на образец-керн без создания изгибающих моментов (Рисунок Пб). При испытаниях на адгезию выявлено когезионное разрушение бетонной подложки (Рисунок П7). Результаты исследований приведены в Таблице 4.

Таблица 4Изменение уровня адгезии состава **АРБ-10Ф** в процессе испытаний на морозостойкость

Марка материала	Обработка поверхности- подложки	Адгезия к бетонному основанию через 28 суток нормального хранения		Адгезия к бетонному основанию после 8-ми циклов замораживания при -50°C и оттаивания при +20°C в 5% растворе NaCl, МПа		
	Стальная щетка и вода	2,62		0,0	2,09 (ΔR=8,3%)	
				1,74		
		2,89	2,65	2,30		
				2,89		
		2,45		2,19		
АРБ-10Ф				2,17		
АРБ- ТИ Ф	Eporip	2,69	2,52	2,17	2,17 (ΔR=11,1%)	
				2,17		
		2,37		2,38		
				2,11		
		2,51		2,03		
				2,17		

Экспериментально установлено, также, что применение состава **Eporip** в основном позволяет обеспечить адгезию к бетону подложки после 12-и циклов замораживания-оттаивания (разрушение образцов-кернов по подложке), что соответствует марке адгезионного контакта по морозостойкости равной F400 в солях.

Процесс исследования бетонных смесей в **ОАО ЦНИИС**

Рисунок П1 Приготовление ремонтного состава Mapegrout Thixotropic

Рисунок П2 Приготовление ремонтного состава АРБ-10Ф в растворосмесителе принудительного действия

Рисунок ПЗ
Нанесение адгезионного состава марки
Ерогір на поверхность бетонного
основания

Рисунок П4 Укладка ремонтного материала **АРБ-10Ф**

Рисунок П5
Высверливание сэндвич образцов – кернов, содержащих бетонное основание и ремонтный состав

Рисунок П6 Испытательная машина для измерения величины адгезии

Рисунок П7 Испытания на адгезию, происходит когезионное разрушение бетонной подложки

4. Выводы об эффективности применения ремонтных материалов Mapegrout Thixotropic, Mapegrout Hi-Flow, APБ-10Ф и Eporip

1. Кинетика набора прочности материалов **Mapegrout Thixotropic**, **Mapegrout Hi-Flow** и **APБ-10Ф** показывает, что указанные материалы имеют высокие показатели прочности на сжатие (не менее 60 МПа на 28-е сутки).

Установлен высокий уровень прочности материалов **Mapegrout Thixotropic**, **Mapegrout Hi-Flow** и **APБ-10Ф** в первые часы твердения. Выдерживание ремонтных материалов при температуре в +40°C позволяет уже через 6 часов после укладки обеспечить прочность ремонтного материала выше 100 кгс/см².

Такой уровень прочности, особенно в первые часы после нанесения, обеспечивает применение указанных материалов для ремонта конструкций транспортного назначения, в том числе в условиях коротких перерывов движения транспорта.

- 2. Выявлена хорошая устойчивость величины адгезии ремонтного состава **АРБ-10Ф** к бетонной подложке на действие циклического замораживания-оттаивания контактного слоя. Применение адгезионного состава **Eporip** существенно повышает уровень надёжности адгезии ремонтных материалов к бетонному основанию, особенно в зонах, где трудно обеспечить требуемые параметры ремонтируемой поверхности.
- 3. Экспериментально установлено, что применение адгезионного состава марки Eporip в основном позволяет обеспечить адгезию ремонтного состава APБ-10Ф к бетону подложки и после 12-и циклов замораживания-оттаивания (разрушение образцов-кернов по подложке), что соответствует марке адгезионного контакта по морозостойкости равной F400 в солях.

для заметок

для заметок

